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Abstract: We study the SO(8) superconformal theory proposed recently by Bagger and

Lambert as a possible worldvolume theory for multiple M2-branes. For their explicit ex-

ample with gauge group SO(4), we rewrite the theory (originally formulated in terms of a

three-algebra) as an ordinary SU(2) × SU(2) gauge theory with bifundamental matter. In

this description, the parity invariance of the theory, required for a proper description of

M2-branes, is clarified. We describe the subspace of scalar field configurations on which

the potential vanishes, correcting an earlier claim. Finally, we point out, for general three-

algebras, a difficulty in constructing the required set of superconformal primary operators

which should be present in the correct theory describing multiple M2-branes.
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1. Introduction

In this note, we investigate a fascinating 2+1 dimensional field theory proposed recently

by Bagger and Lambert [1 – 3] as a worldvolume description of multiple M2-branes in

M-theory.1 Like the N = 4 supersymmetric Yang-Mills theory in 3+1 dimensions, this

theory has an explicit Lagrangian description, which the authors construct based on a new

algebraic structure called a “three-algebra,” (an equivalent structure was proposed in [5])

reviewed in section 2 below. Bagger and Lambert have shown that one obtains an N = 8

supersymmetric theory with manifest SO(8) R-symmetry given any such three-algebra, and

argued that the theory must be superconformally invariant. In the original work by Bagger

and Lambert, only a single example of such an algebra was given [2].

In this note, we explicitly rewrite the Bagger-Lambert theory in this example as an

ordinary gauge theory with gauge group SU(2) × SU(2) and matter in the bifundamen-

tal representation. This construction clarifies how the theory is able to maintain parity

invariance - required if the theory is to describe M2-branes - despite the presence of a

Chern-Simons term. Specifically, we find that twisted Chern-Simons term in the original

formulation of the theory breaks up into separate Chern-Simons terms for the two SU(2)

gauge fields with opposite sign. While each of these is odd under parity, the combination

is parity-invariant if we stipulate an exchange of the two gauge fields under parity.

We next analyze the scalar potential of the theory, and characterize the space of

configurations for which this potential vanishes. For the explicit example, we find that

the space of gauge-inequivalent scalar field configurations on which the potential vanishes

is (R8 × R8)/O(2) where the O(2) rotates the two R8 factors into each other. We show

1For a review of properties of M2-branes, see [6].
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that the SU(2)×SU(2) gauge symmetry is broken to U(1) at a generic point on this space,

while there is a special vector subspace that preserves SU(2).

Finally, we comment on gauge-invariant operators in the Bagger-Lambert theory.2

AdS/CFT duality predicts that these theories should contain superconformal primary

operators in traceless symmetric representations of SO(8) with any number of indices (with

the exception of the theory of two M2-branes, where due to the stringy exclusion principle,

such representations with an odd number of indices are absent from the interacting part

of the theory). On the other hand, we argue that the odd-index representations cannot

be constructed from fields in the Bagger-Lambert theory, unless there is some additional

algebraic structure (e.g. an ordinary product).

Note: After this work was completed, the papers [10 – 12] appeared, which have some

overlap with the present work.

2. Review of the Bagger-Lambert construction

To begin, we briefly recall the Bagger-Lambert construction of a class of SO(8) supercon-

formal theories. This starts by defining a three-algebra to be a vector space with inner

product, together with a completely antisymmetric triple product, where the inner product

and the triple product are defined by their action on a basis T a by

Tr(T aT b) = hab

and

[T a, T b, T c] = fabc
dT

d .

The triple product is required to satisfy

[A,B, [C,D,E]] = [[A,B,C],D,E] + [C, [A,B,D], E] + [C,D, [A,B,E]] ,

so that the operation [A,B, ∗] behaves like a derivation when acting on a triple product of

elements, and also

Tr(A[B,C,D]) = −Tr([A,B,C],D)

so that fabcd = hdefabc
e must be totally antisymmetric.

Given such an algebraic structure, one constructs a field theory starting with eight

algebra-valued scalars XI
a transforming in the vector of SO(8), eight algebra valued spinors

transforming in the antichiral spinor representation of SO(8), and a gauge field Aµab anti-

symmetric in the algebra indices. The spinors may be arranged into a single 32-component

Weyl spinor Ψa, obeying

Γ012Ψ = −Ψ ,

where we will use the notation ΓI to denote 32 × 32 Dirac matrices. Defining

Ãc
µd = fabc

dAµab

2This section of the paper arose from a discussion with Jaume Gomis, who suggested thinking about

chiral operators in the Bagger-Lambert theory.

– 2 –



J
H
E
P
0
5
(
2
0
0
8
)
1
0
5

we can define covariant derivatives (D̃µXI)a and (D̃µΨ)a and a field strength F̃ a
µνb via the

standard definitions, it may be checked that these transform covariantly under a gauge-

symmetry

δXI
c = Λ̃d

cX
I
d

δΨc = Λ̃d
cΨd

δÃd
µc = D̃µΛ̃d

c

Λ̃c
d ≡ fabc

dΛab .

With these definitions, the Bagger-Lambert action is

L = −1

2
DµXIaDµXI

a +
i

2
Ψ̄aΓµDµΨa +

i

4
Ψ̄bΓIJXI

c XJ
d Ψaf

abcd

− 1

12
Tr([XI ,XJ ,XK ][XI ,XJ ,XK ])

+
1

2
ǫµνλ(fabcdAµab∂νAλcd +

2

3
f cda

gf
efgbAµabAνcdAλef )

In [2], this was shown to be invariant under gauge transformations and 16 supersymmetries:

δXI
a = iǭΓIΨa

δΨa = DµXI
aΓµΓIǫ − 1

6
XI

b XJ
c XK

d f bcd
aΓ

IJKǫ

δÃb
µa = iǭΓµΓIX

I
c Ψdf

cdb
a .

where the spinor ǫ has the opposite chirality from Ψ,

Γ012ǫ = ǫ .

2.1 Example

An example of this algebraic structure was given by Bagger and Lambert in [2]. In this

case, the vector space is R4 and we can take

hab = δab

fabcd = fǫabcd

for some constant f . In this case, the triple product is the natural generalization to four

dimensions of the usual cross product: it gives a new vector perpendicular to the vectors

in the product whose length is the signed volume of the parallelepiped spanned by the

vectors.

3. Description as a bifundamental gauge theory

We will now see that for the known case just described, the Bagger-Lambert theory may

be rewritten explicitly as an ordinary gauge theory with gauge group as SU(2) × SU(2),

and matter in the bifundamental representation.
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Under the SU(2) × SU(2) decomposition, a real vector of SO(4) becomes a bifunda-

mental of SU(2) × SU(2), obeying the reality condition

X
αβ̇

= ǫαβǫ
β̇α̇

(X†)α̇β

Explicitly, we can write

XI =
1

2

(

xI
4 + ixI

3 xI
2 + ixI

1

−xI
2 + ixI

1 xI
4 − ixI

3

)

with a similar expression for the spinor.

The gauge field Aµab may be decomposed into self-dual and anti-self-dual parts

Aµab = − 1

2f
(A+

µab + A−
µab) A±

µab = ±1

2
ǫabcdA

±
µcd

in terms of which we define

Aµ = A+
µ4iσi Âµ = A−

µ4iσi

where the Pauli matrices σi are normalized so that Tr(σiσj) = 2δij . Making all the re-

placements, we find that the action becomes

L = Tr(−(DµXI)†DµXI + iΨ̄†ΓµDµΨ)

+Tr

(

− 2

3
ifΨ̄†ΓIJ(XIXJ†Ψ + XJΨ†XI + ΨXI†XJ )

−8

3
f2X [IXJ†XK]XK†XJXI†

)

+
1

2f
ǫµνλTr(Aµ∂νAλ+

2

3
iAµAνAλ)− 1

2f
ǫµνλTr

(

Âµ∂νÂλ +
2

3
iÂµÂνÂλ

)

where

DµXI = ∂µXI + iAµXI − iXIÂµ

The supersymmetry transformation rules above become

δXI = iǭΓIΨ

δΨ = DµXIΓµΓIǫ +
2

3
fXIXJ†XKΓIJKǫ

δAµ = f ǭΓµΓI(X
IΨ† − ΨXI†)

δÂµ = f ǭΓµΓI(Ψ
†XI − XI†Ψ) .

Note that the twisted Chern-Simons term in the original formulation has decomposed into

two separate ordinary Chern-Simons terms for A and Â, albeit with opposite signs. The

usual constraint that arises by demanding invariance under large gauge transformations

then requires us to choose

f =
2π

k
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where the level k is an integer. It is particularly interesting to note that after a rescaling

A → √
fA, all interaction terms in the theory are proportional to positive powers of f , so

the theory becomes weakly coupled in the limit of large k. Thus, the theory can be solved

exactly in the limit of large level and studied in perturbation theory for large level.

3.1 Parity invariance

In the explicit expression for the action above it is straightforward to see how the theory

manages to have a parity invariance symmetry despite the presence of Chern-Simons terms

which are parity-odd.3 Since the Chern-Simons terms for A and Â have opposite sign, the

action of parity combined with the switch

Aµ ↔ Âµ

leaves the gauge field part of the action invariant. In order to make the remainder of the

bosonic action parity invariant, we must also demand a transformation

XI ↔ XI† .

Invariance of the full action presumably now follows from supersymmetry, however we refer

the reader to [10] for a more explicit discussion of parity for the fermionic terms in the

action. Inspection of the kinetic term for the fermions shows that the correct transformation

for these is

Ψ ↔ Γ1Ψ† .

where the Γ1 factor comes from the standard parity transformation. All of these parity

transformations may be seen to arise in the original language from a transformation that

combines spacetime parity and a flip of the (234) directions in the internal space.

4. Scalar potential

In this section, we consider the scalar potential for the SO(4) example of the Bagger-

Lambert theory, and characterize the set of gauge-inequivalent scalar field configurations

for which the potential vanishes.4

To begin, we recall that in this case, the bosonic matter fields are 8 (distinguishable)

vectors in an R4 that is rotated by the gauge symmetry. The triple product gives a new

vector perpendicular to the vectors in the product whose length is the signed volume of the

parallelepiped spanned by the vectors. The bosonic potential is proportional the square of

this volume, summed over each possible triple of vectors.

With this description, it is clear that the bosonic potential vanishes if and only if any

three of the vectors lie in the same plane. This space is labeled by ordered sets of 8 vectors

all of which lie in the same plane, with sets related by overall rotations in R4 considered

equivalent. Without loss of generality, we may assume that all vectors lie in the x3 − x4

3Here, we take parity to be defined as a reflection in the x1 direction.
4This was considered previously in [3] but we find a slightly different result.

– 5 –



J
H
E
P
0
5
(
2
0
0
8
)
1
0
5

plane; the 8 x3 coordinates and 8 x4 coordinates form ordered octuplets which are rotated

into each other by the residual O(2) gauge symmetry. We conclude that the space of

gauge-inequivalent scalar field configurations for which the potential vanishes in the SO(4)

Bagger-Lambert theory is (R8 × R8)/O(2).5

We briefly comment on the symmetry-breaking structure for the scalar field configu-

rations just described. In our bifundamental notation, these configurations with vanishing

potential are exactly the set of matrices XI that are diagonal up to gauge transformations.

A generic such point may be described by a matrix

XI =

(

zI 0

0 z̄I

)

where zI are complex. This preserves residual U(1) gauge symmetry, generated by Aµ =

Âµ ∝ σ3. On the vector subspace where zI is real, a full SU(2) is preserved, generated by

Aµ = Âµ.

5. Superconformal operators

The correct superconformal theory describing multiple M2-branes is believed to be dual to

M-theory on AdS4 × S7, with the curvature of the spacetime in Planck units determined

by the number N of M2-branes [13]. For large N , the curvature is small, and supergravity

should provide a good description of the low energy physics. Thus, low-dimension operators

in the superconformal field theory should be in one-to-one correspondence with the spec-

trum of supergravity fluctuations around the AdS4 × S7 background. The single-particle

states were determined in [14] and shown in [15 – 17] to correspond to a single series of ir-

reducible representations of the superconformal algebra, labeled by an integer k ≥ 1. The

operators of lowest dimension in each of these representations, are superconformal primary

operators of dimension k/2 transforming in the symmetric traceless k-index representation

of the SO(8) R-symmetry group. Thus, such operators should be present in the conformal

field theory that describes the decoupled physics of a large number of M2-branes.

In the Bagger-Lambert theory for a general 3-algebra, the matter fields XI
a and (Ψα)a

transform in the 8v and 8c representations of SO(8) and carry a single algebra index (they

are elements of the algebra itself). Meanwhile, the gauge fields are SO(8) invariant and

carry two algebra indices. To form gauge invariant operators, all algebra indices must

be contracted. In the absence of any additional algebraic structure, the only invariant

tensors that we have to work with are hab and fabcd (this is certainly true in the SO(4)

example). As a result, all gauge-invariant operators must have an even number of matter

fields. The tensor product of two 8c representations gives representations appearing in the

tensor product of even numbers of 8v representations. Thus, the SO(8) representation of

any bosonic gauge-invariant operator must be an ordinary tensor representation of SO(8)

with an even number of indices. In particular, it seems impossible to construct the expected

operators in symmetric, traceless representations of SO(8) with an odd number of indices.

5Our result differs from the one in [3] by the presence of the O(2) factor.
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For the special case of two M2-branes, the situation is slightly better, due to the stringy

exclusion principle [21, 18 – 20], which reduces the expected spectrum of operators from

the full supergravity result. In this case, the expected result for the operator spectrum

(conjectured in ([22])) for the interacting part of the M2-brane theory does not contain

symmetric traceless representation with an odd number of SO(8) indices.6

Our discussion above shows that if the Bagger-Lambert theory based on some example

of a 3-algebra is to describe the worldvolume theory of three or more M2-branes, there must

be some additional algebraic structure that allows us to form gauge-invariant operators

more general than those constructed from the invariants hab and fabcd alone.

Note added. The journal version of this paper has been updated to better reflect the

current state of knowledge about the Bagger-Lambert theory and its relation to M2-branes.

When the original version of this paper was written, the existing proposal was that the

SO(4) example of the Bagger-Lambert theory (plus a decoupled free sector) described the

physics of 3 M2-branes in uncompactified M-theory. The discussion in the original sections

4 and 5 was designed in part to call into question this proposal. More recently, a new

explicit proposal for the M-theory interpretation of the SO(4) Bagger-Lambert theory has

been put forth [7 – 9], namely, that this theory (without the decoupled sector) describes

the physics of two M2-branes on a certain type of orbifold (whose nature depends on the

level parameter of the Chern-Simons theory).
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